
AXISYMMETRICAL OPENBEM 
 
Theoretical background 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The model makes use of the Helmholtz integral equation: 
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Relates pressure/velocity (p, v) on the surface (S) of a body (Q) and an incoming wave 
(pI) with the pressure on external point P. k is the wavenumber, G(R) = e-ikR / R the 
Green function, R is |P – Q|, zo the characteristic impedance (c) and C(P) the solid 
angle seen from P (4 for P outside S, 0 inside and 2 on S, if S is smooth). 

 
Both harmonic time variation and infinite homogeneous medium are supposed (p 
satisfies 2p + k2p = 0). 
 
 
Axisymmetrical formulation with non-axisymmetrical boundary conditions 
 
The Helmholtz integral equation is expressed in cylindrical coordinates and the 
dependence on the generator is separated from the dependence on rotational 
coordinate. In other words, if the body/bodies are symmetrical around a common axis, 
the surface integral can be reduced to a line integral along the generator. 
 
The use of a cosine expansion of p and v in orthogonal terms, allows the isolation of 
the singularities contained in the revolution integrals. 
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In this way the rotational dependence can be solved analytically, so that only the 
generator has to be discretized. The calculation produces the coefficients pm and vm. 
The final approximate solution is obtained by summing up a sufficient number of 
terms. 
 
If the integral equation above is discretized into elements along the body(s) generator, 
it can be converted into a system of equations. This system can be expressed as a 
matrix equation: 

2,... 1, 0, = m   ;  p  4 + v B z k ip A = p C m
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where m represents the term of the cosine expansion. The pressure and normal 
velocity on the nodes along the generator are pm and vm, pI

m is the pressure of the 
incident wave on the nodes in the absence of the body. The matrices Am and Bm are 
only function of the geometry, frequency and m term; this makes possible to reuse its 
calculation for different boundary conditions. 
 
This equation could be expressed by replacing the pressures pm by velocity potential. 
To adjust, the ikzo factor of the velocity term should be removed. However, this is not 
very relevant for the purpose at B&K, since the calculations are usually made for 
sound pressure. 
 
The C constants are represented by a diagonal matrix. This term in the left-hand side 
can be subtracted in the right-hand side in this way: 
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This is done automatically in the ‘BemEquat’ function, therefore its output is A’m. In 
other words, they are only useful for the code developers. We will call A’m just Am 
from now on, but the difference should be clear. 
 
 
Solving the system in Matlab 
 
This matrix form can be written and solved directly in Matlab. The equation must be 
composed with the known data and solved to obtain the unknown data. The available 
boundary conditions and excitations can vary from problem to problem. For example, 
a scattering problem with a rigid body (no normal surface velocity, infinite 
impedance) with an external excitation (sound sources) would not have velocity term, 
therefore it can be written: 
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On the other hand, a radiation problem with no external excitation would have normal 
velocities defined on the boundary. It would be: 
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Velocity and impedance 
 
The velocity and impedance boundary conditions must be implemented through the 
velocity term: 
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The values are expanded here for all the nodes (M). The Yi are the admittances on the 
nodes (impedances-1), and the vo

mi are the fixed normal velocities on the nodes in 
radiation problems. Only one of the terms in the right-hand side will be usually 
present, but in some practical cases both could exist. This happens when lining 
material covers the surface, and therefore the normal surface velocity is different from 
the air normal velocity. 
 
As an example, let us consider a scattering case with finite surface impedance: 
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Solving for the velocity 
 
Up to now, it is assumed we solve the pressure, but it may happen that the pressure is 



given at the boundary and we must calculate the velocity. A simple example is a 
pressure release boundary. 
 
When pressure and velocity boundary conditions are mixed along the boundary, the 
system of equations must be rearranged in order to solve it. In this example one node 
has a pressure boundary condition: 
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The index m that indicates expansion term has been removed for simplicity. 
 
 
Expansion in m-terms 
 
As explained before, pressure and velocity are expanded in cosine series. In this way 
they can have a non-axisymmetrical behavior. This implies solving a different system 
of equations for every value of m, and assembling the solution using the coefficients 
of the expansion obtained. 
 
This is how the different terms are handled: 
 
-The incoming field from external sources is calculated for every m value by the 
function ‘incoming’. It must be called for every new m term. 
 
-The normal velocity boundary condition must also be expanded. The function 
‘expand’ uses FFT to obtain the m terms in this case. An example is the half-ring 
source. 
 
-The coefficient matrices A and B must also be obtained for every m value. The 
function ‘BEMequat’ is able to calculate them together for all m-values, saving 
computer time. 
 
-The impedance cannot be expanded in cosine series. Therefore, only axisymmetrical 



impedances are allowed. 
 
The number of m values needed depends on the accuracy needed in the rotational 
direction, the frequency and the smoothness of the rotational variation. A few tries 
should give an idea for a specific problem. 
 
 
Quarter point technique 
 
The acoustic variables near a square edge vary as r2/3, where r is the distance to the 
edge. The quarter point technique consists in a displacement of the central node in the 
adjacent element towards the edge, up to a certain distance (0.275 times the element 
length) that makes the shape functions very similar to the actual function. This makes 
the solution more accurate with fewer elements. 
 

 
 
 
 
 
 
 
 
 

 
 
The quarter point technique is implemented during the meshing of the generator in 
‘nodegen’. 
 
 
Diaphragm modeling 
 
An approximation that only takes into account the first mode of vibration can be used. 
The diaphragm acoustic impedance is considered infinite. This is called in Peter’s 
program ‘blocked diaphragm’ calculation. 

 
Both sensitivity and pressure response are affected by a parabolic weighting function 
f(r) = 1- (r2/a2), where r is the distance to the center and a the radius of the 
diaphragm. If we call the radius of the backplate b, the microphone complex pressure 
‘output’ is: 
 

p =  
 p(r) f(r) r dr

 f(r) r dr
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